
Mashup Development with Web Liquid Streams

Andrea Gallidabino, Masiar Babazadeh, and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch

Abstract. Web services such as Twitter and Facebook provide direct
access to their streaming APIs. The data generated by all of their users
is forwarded in quasi-real-time to any external client requesting it: this
continuous feed opens up new ways to create mashups that differ from
existing data aggregation approaches, which focus on presenting with
multiple widgets an integrated view of the data that is pulled from mul-
tiple sources. Streaming data flows directly into the mashup without the
need to fetch it in advance, making it possible to exchange data between
mashup components through streaming channels. In this challenge sub-
mission we show how streaming APIs can be integrated using a stream
processing framework. Mashup components can be seen as stream opera-
tors, while the mashup can be defined by building a streaming topology.
The mashup is built with Web Liquid Streams, a dynamic streaming
framework that takes advantage of standard Web protocols to deploy
stream topologies both on Web servers and Web browsers.

Keywords: Mashups, Streaming

1 Introduction

The mashup concept and the interest in the mashup tools started to appear when
more and more Web services and Web Data sources were released [1]. While
Mashups can be built using traditional Web development tools, languages and
frameworks, specialized mashup composition tools have appeared focusing on
raising the level of abstraction and thus enabling non-programmers to compose
mashups [2]. Different tools can be characterized depending on the users they
target, and the mashup development approach they implement [3]. A precise
categorisation of the various mashup tools describes synthetically their expressive
power and the type of solution they propose can be found in [4].

Mashups are in general data centric applications which gather data from
many Web services or Web data sources and mix them together in a single inte-
grated application. Data may be fetched from the Web in many different forms:
static resources accessible through static URLs (e.g. JSON/XML files), resources
accessible through REST APIs, or – in the case of this paper – streaming and
feed APIs that forward new data to clients without the need of any new request
after the initial subscription. Mashup tools make it easy to integrate one or more
of those type of data.



This paper presents the rapid mashup challenge solution proposed by the Web
Liquid Streams (WLS) framework [5], a stream processing runtime that helps
developers deploy streaming topologies running on heterogeneous Web-enabled
devices. WLS helps the users to develop logic mashups by creating JavaScript
logic components. Components may interact with any of the data sources de-
scribed above and components may be connected together in order to create a
streaming topology representing the mashup.

2 Web Liquid Streams Framework

WLS helps Web developers to create streaming topologies running across hetero-
geneous Web-enabled devices. Any device on which a Web browser or a node.js
Web server can run can be used to produce, process or consume a WLS stream.
WLS targets programmers that are able to write JavaScript code that runs both
on the server and on the client. Mashup components in WLS are called oper-
ators and may interact with any Web services API (both streaming, RESTful
and RPC-based). An operator is the core building block of a streaming topol-
ogy, it can receive data, process it and forward results downstream. By binding
(connecting) two or more operators together it is possible to define a streaming
topology.

Operators may run on Web server or on Web browsers. In both environment
they can use the same WLS API to produce and consume the data stream.
Operators running on a Web Browser have also access to an extended API for
rendering the data stream and visualize it on web pages.

Web Liquid Streams abstracts away the deployment of the topology on the
heterogeneous machines from the developers, it keeps the mashup alive in case
of failures and if a mashup component overload is detected it will automatically
allocate more resources [6].

WLS offers the following features, which will be demonstrated during the
challenge:

Reusable mashup components Mashup components written as JavaScript
operators can be reused in more than one topology. Component development
is completely open for developers that can reuse JavaScript libraries and
remotely access any Web service API.

Live mashup development Mashups can be changed while they run. WLS
gives to the users direct access to the topology-creation tools through a
command line interface. Users can run, stop, or bind mashup components,
furthermore they can decide to migrate them on any peer connected to the
application.

JSON mashup definition language Mashups can be defined by using our
internal DSL based on the JSON syntax. The structure of mashups created
interactively through the dynamic topology-creation tools can be viewed and
automatically saved in JSON format, which can be manually edited and once
again deployed to reconstruct the same mashup



Web of Things mashups Web Liquid Streams enables integration with smart
devices and sensors which can create streams of data. WLS can run mashup
components directly on those devices so that they can directly access hard-
ware sensors and actuators.

Distributed user interface mashups Multiple operators to visualize the data
stream can be instantiated and deployed on different client devices so that
the same mashup results can be shared among multiple users.

3 Checklist

3.1 Mashup Feature Checklist

Mashup Type Logic mashups
Component Types Logic components
Runtime Location Both Client and Server
Integration Logic Choreographed integration
Data passing logic Direct data passing
Instantiation Lifecycle Short-living

3.2 Mashup Tool Feature Checklist

Targeted End-User Programmers
Automation Degree Semi-automation or manual
Liveness Level Level 4
Interaction Technique Textual DSL and other (console)
Online User Community None

4 Demo

In the challenge demo we will present a nonlinear topology deployed both on
server and clients. We will use three different APIs: Google Maps1, GeoNames2,
and the Twitter REST3 and streaming4 APIs. The presentation will show how
operators and bindings behave in a topology and how it can change dynamically
at runtime by adding, removing, or migrating operators. Figure 1 shows the
structure of the topology that will be implemented during the mashup challenge.
Operators will be predefined in advance. At the end of the demo we will involve
the audience so that they can deploy the mashup UI components on their Web
browsers to see for themselves the results of the stream processing.

1 https://developers.google.com/maps/
2 http://www.geonames.org/
3 https://dev.twitter.com/rest/public
4 https://dev.twitter.com/streaming/overview

https://developers.google.com/maps/
http://www.geonames.org/
https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview


Tweet 
Retriever

Tweet 
Geolocate

Stream

Marker 
Creator

REST

Marker 
Clicker

Retweet 
Gatherer 

Marker 
Viewer

on 
mouseclick

on 
mouseover

Server-side
C
lient-side

Fig. 1: Mashup Challenge Topology

Acknowledgment The work is supported by the Hasler Foundation with the Liquid

Software Architecture (LiSA) project.

References

1. Zang, N., Rosson, M.B., Nasser, V.: Mashups: who? what? why? In: CHI’08 ex-
tended abstracts on Human factors in computing systems, ACM (2008) 3171–3176

2. Liu, Y., Liang, X., Xu, L., Staples, M., Zhu, L.: Composing enterprise mashup
components and services using architecture integration patterns. Journal of Systems
and Software 84(9) (2011) 1436–1446

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: Proceedings of the 4th ACM SIGCHI symposium on Engineering inter-
active computing systems, ACM (2012) 211–220

4. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)

5. Babazadeh, M., Gallidabino, A., Pautasso, C.: Decentralized stream processing over
web-enabled devices. In: Proc. of 4th European Conference on Service-Oriented and
Cloud Computing (ESOCC 2015), Taormina, Italy, Springer (September 2015)

6. Babazadeh, M., Gallidabino, A., Pautasso, C.: Liquid stream processing across web
browsers and web servers. In: Proc. of ICWE. Springer (2015) 24–33


